
Debugging and
Visualization for Sanity

g-2

×

μ

Adam L. Lyon
FNAL/SCD

January 2015

GM2-doc-2468

1

1 INTRODUCTION
When writing scientific code, it is often
useful to visualize some aspect of your
program to check that everything makes
sense. Such examples of “debugging for
sanity” include,

• Ensuring that geometry looks right

• Are particles being produced in the
right place?

• Do particles have the right momen-
tum?

• More generally, is your algorithm doing
the right thing?

Hopefully the sooner you debug your
code for sanity, the more correct your
code will be as you write it.

There are two problems with debugging
for sanity:

1. Collecting the data to be visualized

2. Visualizing it with some data visualiza-
tion application like Root, R, python,
or ParaView

Collecting the data means determining
what data you want to view and then
somehow getting that out of your pro-
gram. Typically, one opens a file, col-
lects the data in some object that loops
over events, and then at the end of the
job write that data to the file and close
the file. Or you write the data to a log
file.

These options involve altering your code
to perform this debugging task. You
probably don’t want to run this code
once you’ve past this point in develop-
ment, so you may surround the debug-
ging code with pre-compiler macros to
turn it on and off. This makes your code
ugly and hard to read. Or you’ll just de-
lete this code, but you may need it again
some day later.

This document describes how to use the
OSX Xcode Debugger to instrument
your code to collect the desired data
without altering the code itself.

Debugging for sanity should also lead to
writing useful unit tests that you should
add to your codebase.

There are limitations to this method.
Here we assume that sanity checks
means running or creating a small sam-
ple of events for a quick check. If you
need a large statistical sample (millions
of data points), then you need to do
something more substantial, like write a
special Art analyzer to extract the de-
sired data.

The debugger only has access to ob-
jects in memory. If you need to run a
function to get the desired data, then
this mechanism may not work.

Furthermore, for OSX you need to build
the code you are debugging (you cannot
easily debug libraries in the release).
See GM2-doc-2459 (E989 Note 51) for
more information on using your Mac for
development and debugging.

We’ll follow an example of debugging
the production of particles by the muon
gas gun in the gm2ringsim simulation.

http://gm2-docdb.fnal.gov/cgi-bin/ShowDocument?docid=2459
http://gm2-docdb.fnal.gov/cgi-bin/ShowDocument?docid=2459

2

1.1 PREPARATIONS
We are going to debug for sanity the
creation of particles by the Muon gas
gun in gm2ringsim. For this example,
we will need to build gm2ringsim our-
selves (remember on the Mac, if you
want to debug it, you must build it). We
also need to build it from the debug re-
lease. Using the prof may work, but in
many cases the variables you may want
to examine will be optimized away or in-
accessible. Remember, we are debug-
ging for sanity so we will be making
small data samples. Therefore, speed
should not be a huge issue.

Set up a development area using the lat-
est debug release that is available. You
can find this out by doing

ups list -aK+ gm2 | grep debug

 
For this example. we’ll be using  
gm2 v5_00_00 -q e6:debug. Since this
is a base release, we need to build
artg4, gm2geom, gm2dataproducts and
gm2ringsim ourselves. If there was a
point release, then perhaps we could

have only built gm2ringsim ourselves,
but there is no such debug point release
when this article was written.

All of these topics are covered in the
Offline Computing and Software Manual
(GM2-doc-1825) [or in the release] and
GM2-doc-2459 (E989 Note 51).

Looking at the code, we see that a good
place to check sanity is in
gm2ringsim/actions/PGA/G2MuonGasSo
urce.cc line 214. That is where the gen-
erated particle’s position and momentum
are set. Let’s examine these quantities.

http://gm2-docdb.fnal.gov/cgi-bin/ShowDocument?docid=1825
http://gm2-docdb.fnal.gov/cgi-bin/ShowDocument?docid=1825
http://gm2-docdb.fnal.gov/cgi-bin/ShowDocument?docid=1825
http://gm2-docdb.fnal.gov/cgi-bin/ShowDocument?docid=1825
http://gm2-docdb.fnal.gov/cgi-bin/ShowDocument?docid=2459
http://gm2-docdb.fnal.gov/cgi-bin/ShowDocument?docid=2459

3

2 EXPLORING THE CODE

As shown in the example above, if you click on a line number in the source
editor, you will create a breakpoint (e.g. line 214). Do that. If you switch to the
Breakpoint navigator, the breakpoint will show up there as well, as seen on
the right.

Now run the debugger executing the following command,

gm2 -n 200 -c ProductionMuPlusMuonGasGun.fcl

Since you are running a debug build, execution may be slower than what you
are used to.

4

Above is an example of the debugging
session. Execution has stopped at the
breakpoint (line 214, noted by the green
shaded bar). Let’s look at what variables
we have available. From the code, we
see that g2r and g2p have the created
muon’s position and initial momentum

respectively. These are G4ThreeVector
objects. The debugger can see inside
them, as shown in the variable viewer
(lower left white background). You can
also hover over the variable name
(callout box in the code). We see that

the object has three members. There
are also functions, but we cannot call
them from the debugger (lldb window
lower right), because that code in
Hep3Vector is not accessible. But that’s
ok. We can get what we want by using
the dx, dy, dz components.

5

3 COLLECTING THE DATA
Let’s check the sanity of the initial position and momentum of muons created
by the gas gun. It looks like we want to examine the components of g2r and
g2p. If the debugger is running, quit it (Debug > Detach). We’ll now add this
instrumentation.

Go back to the Breakpoint navigator, right (control-) click on the breakpoint
and choose Edit Breakpoint... A screen will appear (figure at upper right of
this page). Breakpoints have a lot of configuration options. Click on the Add
Action button and choose Log Message. We can now write an LLDB expres-
sion to the log console. Let’s write a comma-separated set of values (csv).
Type in the text box,

@g2r.dx@,@g2r.dy@,@g2r.dz@,@g2p.dx@,@g2p.dy@,@g2p.dz@

 
and be sure the checkbox at the bottom is checked to continue after evaluat-
ing actions. That will make the debugger continue instead of stopping at the
breakpoint. This configuration is shown in the figure on the lower right of this
page. Note that each expression is surrounded by “@”.

6

Now run the debugger again. If the debug-
ger pane is not displayed, do View > Debug
Area > Show Debug Area. As the code
runs, you will see the console area of the
debugger fill with our output! See figure on
right.

Select all of the text (click inside and Edit >
Select All) and copy (Edit > Copy).

Now we must get this information into a file.
Go to your terminal window and open a
new file with emacs,

emacs -nw data.csv

 
On the first line, let’s type the header

x,y,z,px,py.pz

 
and press enter for a new line. Now paste
in the data with ⌘V. Save the file with
Control-X Control-C to quit and then y to
save.

If you do head data.csv, you should see
something like the figure on the lower right.

7

In this example, we wrote the desired
data to the debugger console. You can
also configure the breakpoint to feed
this data into a shell or python script for
processing and/or storing.

In the Breakpoint navigator, right (con-
trol-) click on the breakpoint and choose
Edit Breakpoint... Then click on the Ac-
tion chooser and choose Shell com-
mand. You can also press the + and add
multiple actions to the breakpoint. You
must give the full path to your script and
the arguments list (each argument sepa-
rated by a comma; so the log message
we did earlier works here too).

Make sure the script is executable and
starts with the appropriate #!, or else
Xcode will give errors.

An example script is given on the right.
It first checks if the output file exists, and
if it does not, it writes the header line.
Otherwise it outputs the data to the file.

Such scripts are more convenient than
cutting and pasting.

#!/bin/bash

out="data.csv"

if [! -r "$out"]; then

 echo 'x,y,z,px,py,pz' > $out

fi

echo $1,$2,$3,$4,$5,$6 >> $out

8

3.1 SAVING THE BREAKPOINTS
So long as you don’t delete the break-
points, they will remain in your Xcode
project. You can make a breakpoint inac-
tive and Xcode will ignore it.

There is no built-in way to reconstitute a
breakpoint if the Xcode project is lost
(or, say, someone else wants to try the
breakpoint). Since breakpoints are easy
to create, a best practice would be to
have a debugging directory in the prod-
uct source with any scripts that were
used for data collection along with a text
file describing the breakpoints. The
needed information would be

• File and line number of the breakpoint.
It may be useful to have a copy of the
nearby source code in case the line
number changes due to changes in
the source.

• Information about actions, including
log information, script name and argu-
ments, etc.

• A description of the output data

9

4 VISUALIZATION

Now that we have our data, we should
look at it. There are many avenues to ex-
plore here. We will try three,

• Plots in Root

• Plots in R

• 3D visualization in ParaView

10

4.1 ROOT
Loading the data into Root is possible with TTree::ReadFile. You’ll then have the data in a Root tree and you can use all of the
tools for visualization and analysis that Root provides. See transcript below. Note that Root does not like the header line and com-
plains, but fortunately it just skips it. Two example plots are at bottom: the radial position and momentum around pmagic.

root [0] TTree *T = new TTree("ntuple", "muon creation data")

root [1] Long64_t nlines = T->ReadFile("data.csv", "x:y:z:px:py:pz", ',')

Warning in <TTree::ReadStream>: Couldn't read formatted data in "x" for branch x on line 1; ignoring line

Warning in <TTree::ReadStream>: Read too few columns (1 < 6) in line 1; ignoring line

root [2] T->GetEntries()

(const Long64_t)200

root [3] T->Draw("sqrt(x^2+z^2)")

root [4] T->Draw("sqrt(px^2+pz^2)")  

11

4.2 R
R an open source data analysis applica-
tion (see http://www.r-project.org/) that is
well suited for analyzing simple data
files. The R libraries of dplyr and magrittr
make for a very interesting and easy to
read and write data analysis workflow
(once you understand how things work).
If you are interested in R, be sure to try
out the RStudio application.

See the example code and plot to the
right. We see evidence of a correlation
put into the code.

require(dplyr) ; require(magrittr)

d = read.csv("data.csv", header=T) %>% tbl_df

Add r and p columns

d = d %>% mutate(r = sqrt(x^2+z^2), p = sqrt(px^2 + pz^2))

Plot them

d %$% plot(r, p, xlab='Radius (mm)', ylab='Momentum (MeV/c)')

http://www.r-project.org/
http://www.r-project.org/
http://www.rstudio.com/
http://www.rstudio.com/

12

4.3 PARAVIEW
ParaView is an extremely sophisticated
2D/3D visualization application and
framework used for analysis of large
scale simulations (e.g. air flow over the
space shuttle). See www.paraview.org
for more information and downloading
instructions. For this example we will
use version 4.2.0.

As of writing this document, we do not
have a geometry description that works
well in ParaView. That may be coming.
In the meantime, we’ll make do with
what we have.

Following our example, we have posi-
tion and momentum information for each
created particle. We can plot this infor-
mation in 3D space. To visualize, we will
create a little arrow (a glyph) to indicate
the direction of the momentum vector.

Note that ParaView is a big and compli-
cated program. We will only scratch the
surface here. There are many sites on
the web with additional information.

After launching ParaView, load in the
data.csv file with the menu selection
File > Open... Unfortunately, ParaView
does not use the standard Mac file open
dialog, so you will have to hunt around
to find the file.

A common theme with ParaView is that
any potential expensive operation (like
loading a file) does not complete until
the user presses the Apply button.
Press that now.

A spreadsheet should appear with our
csv data. We need to do a few things be-
fore we can visualize the data fully.

We need to turn the data table into
graphics points. Use the “Table to
Points” filter. From the menu, select  
Filters > Alphabetical > Table to Points.
In the properties box, select x for the X
column, y for the Y column, and z for the
Z column. And press the Apply button.

If you click on the little eye symbol next
to TableToPoints1 so that it is black, and
then close the spreadsheet view (most

likely layout 2). with the x, you will see
Layout 1 and you should see dots form-
ing a circle. These dots are the created
muons. If instead you see a line, you
have the wrong orientation. Click on the
–Y axis button in one of the various tool-
bars. That will change the view to look-
ing down onto the ring.

You can spin around the 3D view with
your mouse.

We do not have any geometry on this im-
age. Let’s see if we can set up bounda-
ries at the vacuum chamber edges. The
magic radius is 7112 mm and the inner

http://www.paraview.org
http://www.paraview.org

and outer walls are ±45 mm from there. The height of
the storage region is ±45 mm as well. So let’s create
two uncapped cylinders, both centered at 0,0,0; both
with a height of 90 mm. One will have a radius of
7067 mm and the other will have a radius of 7157
mm.

Make sure the TableToPoints1 item is selected in the
Pipeline viewer. Create a cylinder source from the menu
by choosing Sources > Cylinder. Fill out the properties
sheet as shown on the upper right and select Apply.

Now create another Cylinder, make it the same as the
first one except the radius is 7157.

You can get a good view of the muons in the ring by ad-
justing the camera (click on the little camera icon in the
image window, next to “3D”) and fill in the positions as
shown on the lower right.

13

Here is the view from doing the previous actions. The dots are the muons in the ring. They all look inside.

Now, let’s add the the momentum directions. First, we have to turn the momentum components into a vector. Make sure the Table-
ToPoints1 item is selected in the pipeline viewer. From the menu, choose Filters > Alphabetical > Calculator. For Result Array Name,
enter pvec. In the text box below, enter px*iHat+py*jHat+pz*kHat and then press Apply. Let’s add another calculator determine the
momentum magnitude. Add another calculator filter. For Result Array Name, enter pmag. In the text box below, enter mag(pvec) and
then press Apply.

14

Now with Calculator2 selected in the
pipeline, choose from the menu Filters >
Alphabetical > Glyph. Then enter (leave
items not mentioned at their defaults),

Tip Resolution = 20

Tip Radius = 0.3

Tip Length = 0.5

Scalars = pmag

Vectors = pvec

Scale Mode = off

Scale Factor = 400

Glyph Mode = all points

then press Apply.

In the pipeline viewer, find the TableTo-
Points1 item and click on the eye icon to
make it grey, hiding the points from view.

We see that the momentum vectors (the
arrows) are tangential to the ring. The
color is the momentum magnitude.

The cylinders have been hidden for a
better view of the muons.

15

Looking from a side angle

Looking down from above

ParaView can do 2D plots as well.

We’ve only barely scratched the surface
of what this program can do.

16

17

5 CONCLUSIONS
Writing code is hard. Writing code correctly is even harder. The abil-
ity to check what a program is doing is essential to having it work
the right way. Debugging is an important part of a developers
toolkit, but doesn’t lend itself to collecting many data points and
visualizing the results.

This note documents debugging and visualization for sanity - a way
to collect data from your program and display it without altering
your code. The Xcode debugger makes it quite easy to inspect and
then extract data to a file. The data may be viewed with a variety of
applications. One hopes by viewing the data, one can confirm that
the program is operating correctly, or quickly see errors and fix
them before they become entrenched in the code.

